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RESEARCH ON PANEL FLUTTER 

By Donald R. Kobett 

ABSTRACT 

A computer program was developed which is pa r t i cu la r ly  w e l l  su i ted  f o r  
use i n  parametric f l u t t e r  invest igat ions where a la rge  quant i ty  of numerical 
data  is  required. The underlying analysis  used exact, l inear ized,  three- 
dimensional aerodynamic theory so  the program can be used t o  inves t iga te  the  
c r i t i c a l  low supersonic regime. 
tunnel i n s t a l l a t i o n s  can be simulated. 
numerical da ta  i s  presented. 

F i n i t e  panel arrays can be  t rea ted ,  and wind 
A l imited quantity of informative 

Most of the da ta  per ta ins  t o  t he  f l u t t e r  of s in-  
g l e  panels with free s ide  edges, with and without adjacent 
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%iYm 
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B 

Bn, u 

Dm, 3 

Dn, k 

E 

- 

%, m 

(Notation used i n  t h e  Appendices only i s  defined a t  that  
point and not repeated here) 

= coeff ic ient  i n  Fourier expansion of chordwise def lect ion function 
(E¶.* (32 

= matrix defined i n  m. (38) 
= chord of one panel (Fig. 1) 

= defined by Eq. (31) 

= half wavelength i n  Fourier expnsion of spanwise def lect ion 
shape (Eq. (23))  

= coeff ic ient  i n  Fourier expansion of spanwise def lect ion shape 
(Eq. (23)) 

= matrix defined i n  m. (38) 
= span of one panel (Fig. 1) 

= defined by Eq. (31) 

= matrix defined i n  Eq. (38) 

= coeff ic ient  i n  chordwise deflection function (Eq. (17 ) )  

= coeff ic ient  i n  spanwise deflection function (Eq. (18)) 

= sound veloci ty  i n  undisturbed stream 

= flexural r i g i d i t y  of panel - Eh3 - 
12( 1 2 )  

= coeff ic ient  i n  chordwise deflection function (Eq. (17) )  

= coeff ic ient  i n  spanwise deflection function (Eq. (18)) 

= modulus of e l a s t i c i t y  of panel material 

= matrix defined i n  Eq. (38) 
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%,mu 

J- 
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mJm 

%,m 

k 

L 

.CJZ 

M 

m,E 

N 

PU 
- 
P 

P 

Q 

q 

= function defined by Eq. (29) 

= deflection functions (Eqs.(19,20)) 

= integral  defined by Eq. (36) 

= s t ruc tu ra l  damping coeff ic ient  

= integral  defined by Eq. (36) 

= panel thickness (dimensional) 

= aerodynamic in t eg ra l  (Eq. (35)) 

= structural in t eg ra l  (Eq. ( 9 ) )  

= kM/p2 

= s t ruc tu ra l  i n t eg ra l  (Eq. ( 9 ) )  

= 2 = nondimensional f l u t t e r  frequency 
U 

= number of chordwise bays i n  panel array 

= integers  denoting chordwise panels 

= Mach number 

= integers-denoting chordwise mode number 

= number of spanwise bays i n  panel a r r ay  

= function i n  aerodynamic in t eg ra l  (Eq. (22)) 

= perturbation pressure at  upper surface of panel 

= defined by Eq. (5)  

= defined by Eq. (21) 

= i n t eg ra l  defined i n  a. (9) 
= pU /2 = dynamic pressure 2 
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TX 

TY 
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= generalized coordinate 

= in tegra l  defined by Eq. (27) 

= in tegra l  defined i n  m. (9) 
= inverse of aspect r a t i o  

= in tegra l  defined i n  Eq. (9)  

= torque per uni t  length exerted by s t r inge r  on panel edge 

= torque per uni t  length exerted by r ib  on panel edge 

= t i m e  

= free stream veloci ty  

= index i n  Fourier expansion (Eq. (23)) 

= transverse def lect ion of panel 

= reference coordinate system 

= f l u t t e r  parameter 

B 

ym 

Yn 
- 

Y E 

= J M 2 - l  

= defined In Eq. (22) 

= frequency of m ' t h  chordwise mode 

= frequency of n ' t h  spanwise mode 

= dimensionless coeff ic ient  expressing t h e  stringer re s t r a in t  
against  rotat ion 

= dimensionless coefficient expressing the  r i b  r e s t r a i n t  against  
ro ta t ion  

= l oca l  coordinate i n  spanwise d i rec t ion  

= l oca l  coordinate i n  chordwise d i rec t ion  
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5. 

P 

= constant i n  Fourier expansion of spanwise def lect ion function 
(Fig. 3 )  

= defined by Eq. (31) 

= 7pS/p = mass-ratio parameter 

= Poisson's r a t i o  

= nondimensional chordwise coordinate 

= mass density i n  undisturbed stream 

= mass density of panel material 

= h/a = thickness r a t i o  

= chordwise deflection function 

= displaced coordinate i n  Fourier expansion of spanwise deflection 
s hap e 

= spanwise deflection function 

= l oca l  coordinate 

= dimensional f l u t t e r  frequency 



I. INTRODUCTION 

There i s  a t  the  present time a serious need fo r  theore t ica l ly  derived 
quant i ta t ive  data on the f l u t t e r  of f la t  panels i n  a supersonic air stream. 
Aircraf t  and missi le  designers need the information as do persons interested 
i n  re f in ing  the  theory by comparison w i t h  experimental results. To be gen- 
e r a l l y  useful the  data must apply t o  s t ruc tura l  configurations of prac t ica l  
i n t e re s t ,  and must be extensive enough t o  d i f f e ren t i a t e  the  e f fec ts  of the  
numerous nondimensional parameters which characterize the  f l u t t e r  phenomenon. 

The f l u t t e r  problem has been adequately formulated f o r  some t i m e  but 
l i m i t e d  numerical data are avai lable  because of the  considerable e f fo r t  re- 
quired t o  obtain solutions t o  the f l u t t e r  equations. 
computer program was developed which obtains solutions t o  the  f l u t t e r  equations 
w i t h  r e l a t i v e  ease. 
two s ignif icant  features:  

In t h e  present study a 

The program is  writ ten f o r  the  IBM 7094 computer, and has 

1. The underlying analysis i s  broad i n  scope such that a wide 
var ie ty  of physical conditions is covered. 
w i n d  tucnel  s i tua t ions  can be analyzed'.) 

(For example, typ ica l  experimental 

2. A technique f o r  the  solution of the f l u t t e r  equations i s  used 
which is par t icu lar ly  vel1 suited f o r  parametric studies,  i .e. ,  extensive 
parameter var ia t ions can be accomplished with minimum computer e f for t .  

These two features  make the  computer program of considerable prac t ica l  value 
i n  view of the  preceding discussion. 

Computations were carried out for  some p rac t i ca l  physical configura- 
t ions.  
cause of time l imitat ions,  some informative preliminary results were obtained. 
O f  par t icu lar  i n t e re s t  is a comparison t h a t  is  made w i t h  experimental data  f o r  
a f la t  panel w i t h  free side edges, f ront  edge clamped and rear  edge e f fec t ive ly  
pinned L6y. The experimental data give the  minimum panel thickness required 
t o  prevent f l u t t e r  as a function of Mach number (M).  
observed i n  all instances.  For M = 1.2 the  present analysis predicts  t he  
onset of first mode f l u t t e r  i n  good agreement w i t h  t he  experiments. 
M = 1.3 there  i s  again good agreement between theory and experiment on the  
onset of first mode f l u t t e r .  However, for t h i s  l a t t e r  Mach number t h e  theory 
shows tha t  thicker  panels w i l l  f l u t t e r  i n  t h e  second mode. In  other  words, 
the  analysis  indicates  that first mode f l u t t e r  i s  not t h e  c r i t i c a l  condition, 
contrary t o  the  experimental findings. 
that correlat ion between theory and experiment needs t o  be further investigzted.  

Although a re l a t ive ly  small amount of numerical data w a s  gathered be- 

F i r s t  mode f l u t t e r  w a s  

For 

These r e su l t s  lead t o  the  conclusion 

* Nmbers i n  brackets r e fe r  t o  the  bibliography. 
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11. EQUATIONS OF MOTION 

In  t h i s  and t h e  following sections f l u t t e r  equatior.5 of motion are 
derived f o r  panel arrays of t h e  type shown i n  Fig. l.* The panels are geo- 
metrically similar with length a and width b . The array extends t o  an 
arbi t rary number of panels i n  t h e  chordwise and spanwise directions,  and i s  
assumed t o  be bordered by an in f l ex ib l e  surface extending t o  i n f i n i t y .  The 
upper surface 
x direct ion while a uniform, steady, pressure equal t o  t h e  s t a t i c  pressure i n  
the undisturbed stream a c t s  on t h e  lower surface (acoustic e f f ec t s  on t h e  
lower surface and membrane stresses due t o  s t a t i c  pressure difference are not 
admitted). 
terms. 
aerodynamic forces are presented i n  l a t e r  sections. 

(z  > 0) is  exposed t o  uniform supersonic flow i n  t h e  posi t ive 

I n  t h e  present section, equations of motion are derived i n  general 
Specification of boundary conditions and exact formulation of t h e  

Appropriate equations of motion are obtained by extending t h e  derivz- 
t o  include the  case of a f i n i t e  number of panels i n  t he  spanwise 

From small def lect ion p l a t e  theory t h e  equation of motion f o r  t he  
t ion i n  [l] 
direction. 
array i s  

In Eq. (1) w '  is t h e  transverse displacement i n  t h e  z direct ion,  D t h e  
f lexural  r i g i d i t y  of t h e  plate ,  ps t h e  material  density, h t h e  p l a t e  
thickness, and t h e  aerodynamic pressure excess on the  s ide z > 0 . 

Introducing dimensionless quant i t ies  x, y, w, 3 ,  and s according t o  

x = x'/a , Y = Y'/b 

w = w ' / a  9 p = P' /PU* 

s = a/b 

Eq. (1) i n  dimensionless form becomes 

* 
** Differentiation i s  indicated by superscripts i n  parentheses o r  brackets. 

Figures and t ab le s  are shown i n  Appendix A. 

This unconventional notation i s  adopted t o  help c l a r i f y  subsequent formu- 
la t ions.  

- 2  - 



W (4x) + 2s%(2x,2y) + s % ( ~ Y )  + (pSha4/D)w(%) 

+ (pU2a3/D)P(x,yJt) = 0 (3) 

Solution of (3) is  obtained using t h e  Ritz-Galerkin method. 
t i o n  of f l u t t e r  boundaries a harmonic solution i s  sought so the def lect ion i s  
approximated by 

In  the  determina- 

and t h e  pressure i s  m i t t e n  

where t h e  functions $,(x) and .Pm(y) s a t i s f y  the  boundary conditions on 
the  panel.* 
in to  (3). The resu l t ing  equation is  multiplied through by $E(x)$n(y) and 
integrated across the  length and width of t he  panel array t o  give, 

Following the  Ritz-Galerkin method, (4 )  and (5) a re  subst i tuted 

Now define dimensionless parameters 

3 Z = 7 E/q(1-v2) 

* The reason fo r  representing the  spanwise dependence of w by a s ingle  
function $,(y) i s  discussed later. 

- 3 -  



where 

q = dynamic pressure = L p c y  

7 = h/a 

M = Mach number 

2 

c, = somd veloci ty  i n  undisturbed stream 

E = modulus of  e l a s t i c i t y  

v = Poisson's r a t i o  

and let 

s =  . 1 "2  B, dY 

Substitution of (7), (e), and ( 9 )  in to  ( 6 )  yields  the  set of equations 

- 0 -  



where 

P r io r  t o  numerical evaluation of (10) two subsidiary s teps  a r e  necessary. 
F i r s t  t h e  def lect ion functions b,(x) and $,(y) must be formulated. Then 
the  aerodynamic in tegra l  must be put i n  a form su i tab le  f o r  computation. 



III. THE DEFBCTION FUNCTIONS m,(x) and $,(y) 

The def lect ion functions $(x) and Qn(y) must s a t i s f y  t h e  
boundary conditions on the  panel array. I n  t h e  present study two general 
physical configurations a r e  t o  be analyzed, each with i t s  own set of boundary 
conditions. These configurations are: 

A. A panel a r r ay  as pictured i n  Fig. 1, i n  which t h e  panel edges a r e  
supported by e l a s t i c  r i b s  and s t r ingers  i n  t h e  chordwise and 
spanwise directions,  respectively . 

B. A panel array with one panel i n  t h e  spanwise direct ion ( N  = l), 
with t h e  side edges f r e e  and the  spanwise edges restrained by 
s t r inge r s  as i n  A. 

The deflection functions are formulated f o r  configuration A f i r s t .  

Configuration A - Boundary conditions f o r  t h e  panel array supported 
by e l a s t i c  r i b s  and s t r ingers  are complex and t h e  exact conditions are not 
treated here. Instead, two simplifying assumptions a r e  introduced as follows: 

1. The suppoi-ting s t ructure  i s  i n f i n i t e l y  r i g i d  i n  bending, and 

2 .  Torsion i s  transmitted along t h e  l i n e  of a r i b  ( s t r inge r )  i n  
the  p l a t e  only, i . e . ,  t h e  r i b  ( s t r inge r )  o f f e r s  res is tance 
t o  rotat ion proportional t o  loca l  rotat ion i n  t he  p l a t e .  

These assumptions r e t a in  most of t h e  important physical features  and, at t h e  
same time, reduce t h e  complexity of t h e  problem. A s  a consequence of t he  
assumptions t h e  transverse deflections a t  t h e  edges of t h e  panels are zero 
and t h e  bending moments are proportional t o  the  slope perpendicular t o  t h e  
edges. 

I n  fornulat ine the  boundary conditions along t h e  s t r inge r s  it i s  
convenient t o  introduce a loca l  coordinate (Fig. 2 ) .  

and a loca l  chordwise deflection 

(Q 1 
Pm = Bm,J ; z = 1,2,3 ..... L 

- 6 -  



The e l a s t i c  r e s t r a in t s  against ro ta t ion  a t  the  leading and trailiw 
edge s t r inge r s  are taken as one-half the r e s t r a in t  at  the  intermediate ones 
t o  simplify the  formulation. 
from t h e  requirement of zero def lect ion and continuity of s l q e  arid moment a t  
the panel edges. 

The boundary and compatibility conditions follow 

-(o) = 4 -(1) = 0 1 = 1,2,3 .... L (13a) 
'm, L m,R 

a = 2,3 .... L (13b) 

where. ex 
against  rotation.* 
and (13b) requires continuity of slope acrms  the s t r ingers .  
i s  a moment balance at the htermediate  s t r ingers  while (13d) and (13e) a re  
moment balances at  the  bounding ones. 

i s  a dimensionless coefficient expressing t h e  s t r inger  r e s t r a in t  
Equation (13a) requires zero def lect ion at the s t r ingers  

Equation (13c) 

Eoundary conditions along the  r ibs  a r e  formulated i n  similar manner 
by introducing local coordinates and spanwise def lect ion 

(IL) 

and 

> 
* In  terms of dimensional quant i t ies ,  cx i s  given by 

TXa cx = - 
Daldax 

where Tx i s  t h e  torque pcr uni t  length i n  t he  s t r inger  and aw/ax is 
the  slope perpendicular t o  the stringer.  

- 7 -  



The boundary and compatibility conditions become 

(0) = (I (1) = 0 ; k = 1,2,3 .... N (16a) 
'n,k n,k 

where e i s  a coefficient expressing t h e  r i b  r e s t r a i n t  against  rotation.* 
Y 

The def lect ion functions 4, and (I, are taken t o  be t h e  natural  
vibration mode shapes of beams having t h e  boundary conditions (13) and (16), 
respectively. The natural  frequencies and mode shapes of a continuous beam 
simply supported at  equal i n t e rva l s  are given by Miles [2] . 
vas extended t o  include r e s t r a i n t  against  rotat ion i n  [l] . 
i n  Ll] is  repeated i n  Appendix B i n  s l i g h t l y  d i f f e ren t  form. 
the deflection functions can be wri t ten i n  t h e  form 

Miles' analysis 
This development 
It is  shown t h a t  

* In  terms of dimensional quant i t ies ,  e i s  given by Y 

E Y = Tyb/D(aw/ay) 

where Ty i s  t h e  torque per un i t  length i n  t h e  r i b  and aw/ay i s  the  
slope perpendicular t o  t h e  r i b .  

- 8  - 



and 

where 

fm(e )  = s i n  yme - s in  ym sinh ymO 
sinh ym 

sin vn sinh qnv 
sinh vn Tn(v) = s i n  ynq - 

Complete formulations f o r  S m , l  and $n,k a r e  given i n  Appendix B. 

Configuration B - Recall that t h i s  configuration consis ts  of a 
panel a r ray  as shown i n  Fig. 1 having one panel i n  the  spanwise direct ion 
(N = l), w i t h  t he  s ide  edges free and t h e  spanwise edges restrained by 
s t r ingers .  It i s  assumed that the  panel def lec ts  two-dimensionally, i . e . ,  
aw/ay = 0 , and therefore  tha t  

6, 
qn = 4 = 1 . The chordwise def lect ion function 

is t he  same as f o r  configuration A. 

With the  def lect ion functions 0, and on defined, the  in tegra ls  
of ( 9 )  can be readi ly  evaluated i n  closed form. 
reader i s  referred t o  Appendix D. 

For these evaluations the 

One problem remains i n  the  develo2ment of usable f l u t t e r  equations 
from ( lo ) ,  namely, integrat ion of the  aerodynamic pressure term. This in-  
t eg ra l  i s  evaluated i n  the  following section. * 

- 9 -  
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It i s  required t o  evaluate t h e  in t eg ra l  

from (lo), where p(x,y) i s  t h e  aerodynamic pressure act ing on the  top sur- 
face of the panel array.  Since the  low supersonic Mach number region i s  of 
particular i n t e re s t , t he  pressme i s  obtained from linearized, exact, three-  
dimensional aerodynamic theory. 
of Luke and St. John [3J which states t h a t  t he  perturbation pressure on the 
upper surface f o r  harmonic motion, a r b i t r a r y  chordwise deflection 
and sinusoidal spanwise def lect ion 
less  form+ 

U s e  i s  made of a r e s u l t  from the  analysis 

Qm(x) , 
s i n  un@/B can be writ ten i n  the dimension- 

where 

* 

and Jn are Bessel functions of the  first kind. 

The r e l a t i v e  simplicity of t h i s  r e s u l t  comes from having a def lect ion 
shape which extends inde f in i t e ly  i n  the spanwise direction. This advantage 
can be extended t o  panel arrays of f i n i t e  spanwise extent by expanding the 
spanvise deflection shapes 4, i n  a s ine  series. The t o t a l  pressure can then 

* Bb i s  the dimensional half wavelength of the spanwise deflkction dhape. 
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be expressed as a superposition of terms similar t o  p i n  (21). Therefore 
l e t  t h e  spanwise deflection be represented by u,m 

The expansion (23), being an odd periodic function, gives 
periodic reflections.  Therefore B i s  t o  be chosen such tha t  t h e  ref lect ions 
are uncoupled aerodynamically, i n  order t:, achieve the effect  of an isolated 
f inite panel array.* The variable # is  t h e  shifted coordinate 

*n flanked by 

where t h e  constant depends on B. Criteria f o r  the selection of B and 
are derived i n  Appendix E. 

From (21) and (23) t he  pressure on the mn'th deflection' shape is 

and the  general pressure term becomes 

m m 

After some manipulation the  aerodynamic 

U 

integral  from (10) may be wri t ten 

e 

* For fur ther  discussion of t h i s  point see Appendix E and Figs. 3 and 4. 
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where 

$n s i n  SZ! 
B 

F(u) = 

2 b = ‘&Ar/@ r 

The in t eg ra l  R- i s  obtained i n  closed form by making use of ( 1 7 )  and (19) 
(see Appendix ET< The integral  F(u)  can a l so  be readi ly  obtained i n  closed 
form but it is convenient t o  momentarily postpone fu r the r  discussion of t h i s  
integral .  

Two procedures can be used t o  evaluate I- 

1. When ru[; and m are small t h e  Bessel functions i n  Pu(5) can 

m,m,u 

be approximated by a sum of c i r cu la r  functions [3] such t h a t  

where 

Then i f  il (x )  i s  expanded i n  a Fourier s ine series m 

- 12 - 



can be evaluated i n  closed form. Details of t h i s  evaluation are given %i,m,u 
i n  Appendix C. 
L s 2 , and ru5 s 10 . 

Roughly speaking this  procedare i s  sat isfactory f o r  m 5 4 , 

2. When the first procedure i s  not admissible it is  convenient t o  
first change the  order of integration t o  give 

The integration over x can be completed i n  closed form. For t h i s  purpose 
introduce another l oca l  coordinate similar t o  (11) 

then 
L f l  

where 

- 13 - 



G- I?,m,R and %,m,R are integrated i n  closed form i n  Appendix C .  The integra-  
tions i n  (35) are evaluated numerically. 
I- is  used i n  a previously developed computer program f o r  calculating 
f l u t t e r  boundaries f o r  panel arrays of i n f i n i t e  spanwise extent. 
t ions imposed by t h e  Bessel function approximation (Eq.  (30)) prohibit  i t s  
use on f i n i t e  span arrays.  
of t h e  second procedure. 

The f i r s t  procedure f o r  evaluating 

m,m,u 
The l i m i t a -  

Consequently, t h e  program developed here makes use 

It remains t o  evaluate t h e  Fourier coeff ic ients  BntU and the  
function F(u) introduced i n  (26) and (29).  These quant i t ies  depend on both 
geometrical and aerodynamic d e t a i l s  and it i s  thus appropriate a t  t h i s  point 
t o  describe t h e  specif ic  physical s i t ua t ions  t h a t  are t o  be analyzed. There 
are f i v e  cases i n  a l l :  

1. A panel array as shown i n  Fig. 1 with a f i n i t e  number of panels 
i n  both the  chordwise and spanwise direct ion.  
inf lexible  surface extending t o  i n f i n i t y  i n  a l l  direct ions.  

The a r r ay  i s  bordered by an 

2. The same as (1) except that t h e  array extends t o  i n f i n i t y  i n  t h e  
spanwise direction. 

3. The same as (1) except t h a t  t h e  array i s  flanked on t h e  s ides  by 
ve r t i ca l  walls (a wind tunnel i n s t a l l a t i o n  f o r  example) an a r b i t r a r y  distance 
from t h e  edge of the array.* 

4. The same as (1) except t ha t  t h e  array has one panel i n  t h e  span- 
wise direct ion ( N  = 1) and t h e  s ide edges are f r ee .  

5. The same as ( 4 )  except t h a t  t h e  array i s  flanked by 
walls  as described i n  ( 3 ) .  

Cases (1) - (3) conform t o  t h e  general geometrical configuration 

v e r t i c a l  

des c r ibel 
ear l ier ,  while ( 4 )  and (5) conform t o  configuration B. 
ve r t i ca l  walls i n  (3) and (5) i s  obtained by introducing image configurations 
on each s ide (Fig. 4 ) .  For detai led evaluation of Bn,U and F(u) t h e  
reader i s  referred t o  Appendix E. 

The effect  of t h e  

* The analysis i s  completed f o r  t h i s  option but t h e  option was not programmed 
because of t i m e  l imitat ions.  
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V. FI.UITEB FQUATIOMS AND METHOD OF SOUl'lTON 

Flu t t e r  equations are obtained from (10) and (26) 

L Sm [& (l+jg) c\YiJE,mS + 2S2q,mT + s4J;,mQ] 

- $S2JEJmS + ( l / C )  [GJmS + jJz,,Sk(M -2) / e 2  

m 

2 

I n  (37) the s t i f fnes s  terms are multiplied by 
t u r a l  damping. 

( l+ jg)  t o  account f o r  s t ruc-  

It i s  convenient t o  write (37) i n  matrix form. Therefore, l e t  

r r 

Then (37) can be writ ten 

where { qm } i s  the f l u t t e r  vector. 
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Equation (39) represents a Set of simultaneous , homogeneous , algebraic 
equations. For a non t r iv i a l  solution it i s  necessary t o  have 

- ( l+ jg )  %,m - pk 2 J E , ~  + $ C,-,, 
24 

Equation (40) i s  a concise, mathematical statement of the f l u t t e r  problem. 
The computer program must first calculate the elements of the f l u t t e r  matrix 
i n  terms of selected "free" parameters, and then f ind w h a t  combinations of 
free parameters s a t i s f y  (40). 
presents no d i f f i cu l ty .  The process of sat isfying (40), however, requires 
some discussion. 

Set t ing up the matrix i s  straightforward and 

On the surface it appears that the free  parameters might be any of 
, z, k and g . The reduced frequency, k , however, i s  inadmissible since 

it i s  contained within CE,m i n  cGmplicated transcendental form. Further, it 
i s  desirable t o  make g an input parameter, i.e., t o  be able t o  perform 
f l u t t e r  calculations f o r  specif ic  values of g . This leaves only the two 
r ea l  parameters p and Z , and since the f l u t t e r  determinant of (40) is 
complex it i s  necessary t h a t  both p and Z be retained as f r ee  parameters. 
The f l u t t e r  problem i s  therefore reduced t o  one of finding combinations of 
r e a l  p and Z which s a t i s f y  (40), for given Input values of g and k 

There i s  no convenient closed-form type of solution t o  the posed 
problem. A conventional approach i s  t o  i n s e r t  specif ic  real values for ,  say 
p , and solve fo r  the 2 ' s  which s a t i s f y  (40). The 2's so obtained a re  
complex i n  general and it i s  necessary t o  interpolate  on t o  f ind where 
the imaginary p a r t  of Z vanishes. The process i s  complicated by the  f a c t  
t h a t  for  each p there are m values of 2 which s a t i s f y  (40). This compli- 
cation ult imately leads t o  the  necessity t o  make successive computer runs t o  
obtain f l u t t e r  points f o r  we s e t  of g,k values. 

In  the present analysis a solution technique i s  used which reduces 
computation t i m e  by obtaining f l u t t e r  points i n  a s ingle  computer run. 
xethod proceeds as follows. For a given value of p the  character is t ic  
equation of the determinant i s  obtained. This equation i s  a polynomial i n  
with complex coefficients.  Assuming Z t o  be real, the real and imaginary 
parts a r e  separated i n t o  two polynomiaLc 

The 
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+Zm + ..... alz + a, = o 

4,u"+ ..... b lZ  + bo = 0 

Any value of Z (with i t s  associated p ) which s a t i s f i e s  both of Eqs.  (41) 
const i tutes  a f l u t t e r  point. A modified f l u t t e r  c r i t e r ion  i s  therefore ob- 
tained, namely t h a t  Eqs. (41) have at  leas t  one cortmon root.  Now (41) w i l l  
have a common root if and only i f  the Sylvester determinant formed from the a i  
and b i  i s  zero [4J. T h i s  Sylvester determinant i s  i n  essence a single-valued 
function of p 
conventional approach t o  the solution. 
Sylvester determinant i s  calculated for a specified a r ray  of 
an interpolat ion procedure i s  then used t o  f ind  the exact values of 
which it vanishes. These p , with associated Z values, const i tute  f l u t t e r  
points.  The complete process i s  accomplished i n  a single computer run. 

i n  contrast  with the multi-valued function t h a t  a r i s e s  i n  the 
I n  the present computer program the 

fo r  
p values, and 

p 

A computer program has been developed which uses the solution tech- 
nique just  described. Numerical considerations d i c t a t e  the s ize  of f l u t t e r  
system t h a t  can be handled by the program, i.e., the number of chordwise modes, 
m , t h a t  can be used. The present program operates s a t i s f ac to r i ly  i n  general 
fo r  m up t o  s ix .  Specially t a i lo red  routines a re  used f o r  scaling, determi- 
nant evaluation and charac te r i s t ic  equation expansion. It i s  ant ic ipated that 
fur ther  refinements i n  these areas, accomplished through select ive application 
of known comutat ional  techniques, would extend the range of general applica- 
t i on  t o  a greater number of chordwise modes. 
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V I .  NUMERICAL RESUETS 

The computer program obtains f l u t t e r  points i n  te rns  of the two 
general parameters 

mass r a t i o  , 

= stiffness-dynamic pressure r a t i o  

Flut ter  boundaries can be constructed i n  the 
successive calculations f o r  judiciously selected values of reduced f l u t t e r  
frequency k . When only the c r i t i c a l  boundary i s  sought it i s  s t i l l  important 
t h a t  a range of 
f l u t t e r  boundaries i n  the l/p - Zlr3  plane. I f  t h i s  i s  not done the bound- 
a r ies  ident i f ied  as c r i t i c a l  m y  be open t o  question. 

l/p - plane by malung 

k be examined whi h i s  extensive enough t o  locate a l l  the 

Most of the e f f o r t  during t h i s  contract  period went i n t o  development 
of the computer program. 
was obtained. C r i t i c a l  f l u t t e r  boundaries were computed fo r  panel arrays with 
one chordwise bay ( f igs .  6 and 7 ) .  
panel arrays with three chordwise bays. These calculations were exploratory 
ones designed t o  t e s t  the adequacy of the computer program. 
t ions were made fo r  panels with f ree  s ide edges, some i n  the presence of out- 
board v e r t i c a l  walls, f o r  comparison with experimental data. 

Consequently, a l imited quantity of numerical data 

Calculations were a l so  carr ied out fo r  

Finally,  calcula- 

Flutter Boundaries fo r  an Array of Panels 

C r i t i c a l  f l u t t e r  boundaries obtained i n  a four mode analysis  f o r  a 
panel a r ray  consisting of one chordwise bay and an i n f i n i t e  number of spanwise 
bays are shown i n  Figs. 6 and 7. Three edge conditions a re  represented a t  
each of three Mach numbers, fo r  an aspect r a t i o  of 4 and s t ruc tu ra l  damping 
coefficient of 0.01. The edge condition E = 0 i s  the pinned condition while 
b = 1,000 closely approximates the clamped case.* 

* The pinned edge r e su l t s  were obtained e a r l i e r  under this contract  and a re  
included i n  [e]. They a re  repeated here for  comparison purposes. 
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For M = 1.25 and 2 the  f l u t t e r  vectors associated with the boundaries 
a re  dominated by the first vacuum mode. Coupling with the other modes i s  pres- 
en t  i n  both cases but i s  more pronounced f o r  M = 2 . For M = = (Fig. 7) 
the boundaries f o r  e = 10 and 1,OOO are a l so  first mode doninant. For Q = 0 
the c r i t i c a l  boundary i s  composed of three d i s t i n c t  regions. 
the right i s  third mode dominant, the short loop is  fourth mode dominant, and 
the remainder i s  first mode dominant. 

The portion t o  

To in t e rp re t  the resu l t s  i n  Figs. 6 and 7 it i s  best t o  v i e w  values 
as denoting specific combinations of panel r a t e r i a l ,  

nimum free stream dynamic 

on the abscissa 
panel thickness, and al t i tude.  Then the ordinate values (Z1I3) of points on 
the boundaries are inversely proportional t o  the 
pressure that w i l l  cause f l u t t e r .  Thus larger  
s table  conditions. It i s  seen i n  Figs. 6 and 7, that i n  a l l  cases, 
c has a destabil izing effect ,  i.e., f l u t t e r  occurs for  larger  values of Z1 . 
It is  a l so  apparent tha t  the e f f ec t  of varying 
Mach number. Finally, capa r i son  of the figures shows tha t  increasing the 
Mach number has a s t ab i l i z ing  effect .  

(1/p) 

values correspond t o  less 

decreasi9g 
e diminishes with increasing 

Six mode analyses were conducted for  pinned edge panel arrays with 
three chordwise bays and an i n f i n i t e  number of spanwise bays. These calcula- 
t i ons  were intended primarily t o  assess the adequacy of the computer program. 
They w e r e  not extensive enough t o  permit the ident i f icat ion of c r i t i c a l  
boundaries and therefore no detailed results are  given here. 

F lu t t e r  Boundaries f o r  a Single Finite Panel 

Some calculations were carried out f o r  comparison with the experi- 
The experimental data mental d a t a  i n  [6] and the analyt ical  resul ts  i n  [7]. 

are f o r  a panel with free side edges, front edge clamped and rear edge effec- 
t i v e l y  pinned. 
equal t o  6.2 per cent of the panel span. Aspect r a t i o s  vary between 0.95 and 
1.06. 
does not include the e f f ec t  of the wind tunnel wall. 
results are presented i n  the form of thickness-to-prevent-flutter as a function 
of Mach number. 

There i s  a gap between the side edges and the wind tunnel w a l l  

The analysis [7] treats the case of a panel with side edges free  and 
I n  both [6] and [7], 

Two types of calculations were made here, namely, for  

(a) A panel with side edges f ree  surrounded by a quiescent 
surface as i n  c73, and 

(b) A panel with side edges free ,  flanked by v e r t i c a l  sidewalls 
t o  simulate a wind tunnel instal la t ion.  
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Four mode analyses were conducted using the first four na tu ra l  vibration modes 
of a two-dimensional beam. Twenty terms are carr ied i n  the Fourier expansion 
of the spanwise deflection shape. (Typical twenty term representations are 
shown i n  Fig. 8) .  
s t ructural  damping coeff ic ient  of 0.01 (approximately the mean experimental 
values). The experimental edge conditions are not duplicated exactly since 
the present analysis assumes t h a t  edge conditions a t  the front  and rear of 
the panel are the same. Instead, results are obtained f o r  pinned (Q = 0) and 
clamped ( E  = 1,000) conditions t o  bracket the experirental  conditions. 

All calculations are  fo r  an aspect r a t i o  of uni ty  and a 

The calculations were carr ied out f i r s t  f o r  configuration (a )  a t  
M = 1.2 . The following c r i t i c a l  thickness r a t i o s  ( T C r i t )  and frequencies 
were obtained. 

Dominant 
E T w i t  k* Mode - - 

0 0.00465 0.134 1 
1,000 0.00424 0.275 1 

These points agree remarkably wel l  with the experimental r e s u l t s  f o r  M = 1.2 , 
namely, 

k = 0.187 

For t h i s  same case the analysis [ 7 j  gives 
"slightly below the second na tu ra l  frequency." 
results agree b e t t e r  with the experimental data  than with [7], even though 
the tunnel walls are  not simulated. 

+iCrit = 0.0053 a t  a frequency 
It i s  seen that the present 

Calculations were next carr ied out f o r  configuretion (a) a t  M = 1.3 . 
The following r e su l t s  were obtained. 

* Exact values of k a r e  not determined by calculation since T C r i t  i s  
obtained by f 'nding where the c r i t i c a l  boundary in t e r sec t s  the l i n e  i n  
the 1/p - Z1f3 plane denoting experimental conditions. The values 
given f o r  k come from l i n e a r  interpolat ion between calculated points 
on each side of the intersection. 
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Dominant 
k Mode - Tcri t  - 8 - 

0 0.00564 0.61 2 
1,OOO 0.00426 0.73 2 

For t h i s  case the experimental results are 

T C r i t  = O.OO335 

k = 0.165 

and the analysis 1 7 3  gives 
t h i r d  natural frequency." 

T C r i t  = 0.0038 and frequency "s l igh t ly  below the 

The f a i lu re  t o  agree with the experimental data f o r  t h i s  case 
prompted a closer  look a t  the numerical data. 
boundaries associated with the f i r s t  chordwise mode are present i n  the region 
of general  in te res t .  
determine exact ly  where these boundaries i n t e r sec t  the experimental condition 
l ine.  However, reasomble extrapolation yields  the following thickness r a t io s  : 

It w a s  noted t h a t  subc r i t i ca l  

It w a s  not possible t o  run addi t ional  calculations t o  

0 0.0036 
1,000 0.0032 

The corresponding reduced f l u t t e r  frequencies cannot be obtained by extrapola- 
t i o n  but it can be seen that they are  less  than 0.25. These values of T and 
k again compare w e l l  with tbe e-erimental data. 

Calculations were next carried out f o r  configuration (b) t o  assess 
the e f f ec t  of the wind tunnel walls. The following case was investigated.  

M = 1.3 

aspect r a t i o  = 1 

g = 0.01 
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gap t o  w a l l  = 5 per cent of span 

edge conditions = pinned; clamped 

The 5 Fer cent gap i s  smaller than the ac tua l  gap i n  the experimental setup 
(6.2 per cent).  
thickness e f f ec t .  The following results were obtained 

It w a s  so taken t o  allow f o r  the boundary layer  displacement 

Dominant 
k Mode - - c - 

0 0.0060 0.65 2 
1,000 0.0046 0.80 2 

The presence of the walls i s  seen t o  increase 
i.e., the walls have a s l i g h t  destabi l iz ing effect .  
numerical data again revealed the presence of subcriti.ca1 boundaries associ-  
ated with the first m o d e ,  but extrapolation of the boundaries w a s  not attempted. 

T~~~~ by about 10 per cent, 
Examination of t he  

The r e su l t s  t h a t  have just been described are  s m a r i z e d  below for  
c lar i ty .  

Source o f  Mach Edge* Thickness Dominant Gap to* Crit ical .  
No. Cond. Rztio Freq. Mode Wall Cond. - -  Data 

Present 
I I  

b 3  
L71 

Present 
11 

Present 
I 1  

I! 

11 

1.2 P 
1.2 C 
1.2 P-c 
1.2 P-c 
1.3 P 
1.3 C 
1.3 P-c 
1.3 P-c 
1.3 P 
1.3 C 
1.3 P 
1.3 C 

0.00465 
0.00424 
0.00438 
0.00530 
0.00564 
0.00426 
0.00335 
0.0038 
0.0036 
0.0032 
0.0060 
0.0046 

0.134 
0.275 
0.187 

0.61 
0.73 
0.165 

k<O .25 
k4.25 
0.65 
0.80 

- 

- 

1 
1 
1 
2 
2 
2 
1 
3 
1 
1 
2 
2 

* Under edge conditions, P indicates  pinned, C clarn?ed, and P-C the 
experimental conditions of f ront  clamped and rear pinned. 
i s  given i n  per cent of panel span. 

The gap t o  wall 
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The above results must be considered as preliminary, subject t o  a 
more def in i t ive  numerical study. Calculations should be made fo r  addi t ional  
reduced frequencies t o  insure that the points  ident i f ied  as c r i t i c a l  are t ru ly  
c r i t i c a l .  Experience has shown that it i s  sometimes easy t o  miss a complete 
boundary, which may be the c r i t i c a l  one, even though a w e l l  chosen range of 
frequencies i s  used.* I n  t h i s  l i g h t  the case M = 1.2 should be thoroughly 
examined for the presence of a c r i t i c a l  second mode boundary. 
calculations should a l s o  be made t o  examine the convergence of the Galerkin 
procedure and of the Fourier expansion of the spanwise deflection shape. 

Additional 

Estimates of Computing T i m e  

During the course of the  calculations, estimates were made of com- 
puting time. 
first t o  describe the calculation procedure. 
selected first. Included a re  

To present these estimates i n  a meaningful my ,  It i s  necessary 
A s e t  of input parameters i s  

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8 .  

A run on the 

Geometry Code* 

Aspect Ratio 

Mach number 

Edge conditions ( c )  

Number of chordwise modes 

Number of terms i n  expansion of spanwise deflection shape 

Damping coeff ic ient ,  g 

F'requenc y , k 

computer consis ts  i n  loading the data corresponding t o  inputs 1 
through 7 and then cycling through a sequence of frequency values. "he t o t a l  

* This d i f f i cu l ty  of choosing reduced frequencies i s  not unique t o  the pres- 
ent  analysis;  it i s  common t o  a= analyses that mke use of exact, three-  
dimensionel aerodynamic theory. 

i so la ted  panel with free side edges. 
Gemetry code iden t i f i e s  the s i tuat ion t o  be analyzed; f o r  instance, an 
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time for  a run i s  comprised of two separable par ts .  
during which matrices that do not depend on frequency a r e  calculated and 
stored, and there i s  the t i m e  required t o  process each frequency. 

There i s  a setup time 

The number of f l u t t e r  points t h a t  a r e  obtained varies from frequency 
t o  frequency and the running t i m e  varies accordingly. 
culations t h a t  were made f o r  t he  s ingle  panel with f r ee  side edges the follow- 
ing averages were obtained. 

For t he  four mode ca l -  

Set-up t i m e  - 0.5 min. 

Time per frequency - 0.4 min. 

F lu t t e r  points per frequency - 3 

A few runs made using s i x  chordwise modes indicate  t h a t  setup t i m e  approxi- 
mately doubles and running t i m e  fo r  each frequency increases by a f ac to r  of 
about 2-1/2. 

For t h e  runs using s i x  chordwise modes f o r  a panel a r r ay  with th ree  
chordwise bays, t h e  setup time was about 4 min. and t h e  running t i m e  f o r  each 
frequency about 1 t o  1-1/4 min. 
frequency w a s  between 4 and 5. 

The average number of f l u t t e r  points per 
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V I 1  . CONCLUSIONS AND FEXCMMENDATIONS 

A computer program has been developed which has thl-ee significant 
features : 

1 It uses a solution technique that obtains f l u t t e r  points i n  a 
single computer run. 

2 It can handle up t o  six-by-six f l u t t e r  determinants. 

3 It can be used t o  investigate a var ie ty  of physical si tuations,  
including that of a single panel instal led i n  a wind tunnel. 

Preliminary numerical r e su l t s  suggest the poss ib i l i t y  of obtaining meaningful 
comparison with experiment. 

The computer program should be exploited by using it i n  a def ini t ive 
parametric investigation of the f l u t t e r  of f la t  panel arrays. 

An attempt should be made t o  extend the capabili ty of the computer 
program t o  ten-by-ten systems, by refining the implici t  numerical operations. 
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FIGURES 1 THROUGH 8 AND TABLE I 



TABLE A - I  

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

COMPARISON BE!" PARTIALLY CLAMPFD FREQUENCIES 
AND CLAMPED FREQUENCIES (L  = 11 

Partially Clamped Frequency ( e )  
Clamped Frequency ( 8  = m) E - 

10 
10 
10 
10 

100 
100 
100 
100 

1,000 
1,000 
1,000 
1,000 

0.441 
0.640 
0.735 
0.790 

0.772 
0.810 
0.838 
0.859 

0.963 
0.964 
0.965 
0.966 

0.996 
0.996 
0.996 
0.996 
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I + x  

( a )  Chordwise Direction 

I 5. 
k = l  It = 2 k = N  

( b )  Spanwise Direction 

Fig. 2 - Local Coordinates 
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(a) Actual Deflection Shape 

( b )  Analytical Deflection Shape 

( c )  Plan view showing Maximum Spanwise Excursion of 
Forward Facing Mach Cone (Shaded Area) 

Fig. 3 - Gwmetrical Aspects of Spanwise Deflection Expansion 
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Fig. G - Critical Flutter Doundarieo from Four Mode Analysis; 
M = 1.25, s = 1/4, L = 1, g = 0.01 
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Fig. 7 - C r i t i c a l  F lu t te r  Boundaries from Four t4ode Analysis; 
s = 114, L = 1, g = 0.01 
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AWENDIX B 

EQUATIONS OF MOTION OF A UNlFaRM HUM ON MANY SUFFORTS WITII 
ELASTIC RESI'RAINT AGAINST ROTATION 
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I n  t h i s  Appendix, Miles' analysis  of a continuous beam on equally 
spaced supports [23 , i s  extended t o  include the  e f fec ts  of e l a s t i c  r e s t r a i n t s  
against rotat ion a t  the  supports.* 
i n  harmonic motion i s  

The equation of motion of a uniform beam 

I n  the formulation of the  boundary conditions f o r  a beam supported at 
a, 2a, .. . . La, it i s  convenient t o  introduce a dimensionless l oca l  co- 
ordinat e 

x = 0, 

so tha t  

where y4 = X4a4 . 

Taking the e l a s t i c  r e s t r a in t s  against  ro ta t ion  at  the  intermediate supported 
edges twice as large as t h e  e l a s t i c  r e s t r a i n t  a t  the  end points,  the  boundary 
conditions are 

n,(o) = n - ( 1 )  a = 0 a' = 1,2,3 ... . L (B-4) 

- a = 2,3,4 .... L (B-5) 

* The development given here i s  nearly ident ica l  w i t h  t ha t  given i n  Appendix 
B of [l] , the  pr incipal  difference being i n  the  general form that i s  
selected f o r  the  def lect ion shapes. 
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where 8 i s  a dimensionless coefficient expressing the  s t i f fnes s  of r e s t r a in t  
of t he  edge supports.* 

A general solution of (B-3) sa t i s fy ing  (B-4) can be wr i t ten  as 

Y(1-9) - (sin Y sinh Y ( l - € l ) ) / s i n h  Y] 

Substi tution of (B-8) in to  (B-S), (B-6), and (B-7) gives 

q c r  + D- 1 = c- e-1 + p3 -1  a =  2,3,4 .... L 

9C1 + D1 = 0 

CL -+ SDL = 0 

where 

1 p = [sid y - s in  y]-lkinh y cos y - s in  y cosh y 

(B-9) 

(B-10) 

( B-11 ) 

(B-12) 

(B-13) 

q = [ i  s i n  y si& y - e(s inh  y cos y - s i n  y cosh y u - 1  

It i s  convenient t o  note for later use, t ha t  the  conditions 
t h a t  are ident ica l  with those of a single span of length 

q = t1 g i v e  modes 
a , nzmely 

* See the  report  body f o r  d e t a i l s  of B . 
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It can be readi ly  ve r i f i ed  t h a t  (B-15) s a t i s f i e s  (B-9) through (B-12). 

Continuing with t h e  general development, Eq. (B-9) and (B-10) can 
be operated upon t o  give 

D i + l  - 2 COS @ D- + D j - 1  = 0 (B-17) R 

where cos p = p f 9  . 
pq-:- 1 

(B-18) 

The general solution of (B-17) i s  

and from (B-16) there  follows 

(B-19) 

Substituting (B-19) and (B-20) back i n t o  (B-11) and (B-12) gives, a f t e r  Some 
algebraic manipulation, 

k(cos p-q) + B s i n  p = 0 (B-21) 
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(B-22) 

For a nont r iv ia l  solution it is  necessary t o  have s i n  Lp = 0 which gives 

s i n  p - -  - A 
B q - COS p 

(B-23) 

Any value of p which s a t i s f i e s  the condition s i n  I$ = 0 can be used. Later 
considerations of t h e  frequency spectra show that a convenient form i s  

(B-24) 

where 
pm . Now pm s a t i s f i e s  s i n  = 0 so from (B-8), (B-16), (B-17), and 
(B-23) t he  modes a r e  

m = 1,2,3 . . . . , and y, is t he  solution of (B-18) corresponding t o  

where 

f ( 0 )  = s i n  yme - ( s i n  ym sinh yme)/sinh y, m 

(B-26) 

(B-27) 

(B-28) 
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I f  i s  a multiple of TT the  terms s i n  &, and s i n  ( j - l ) c ~ ,  i n  
(B-26) a re  zero. 
namely 

Equation (B-18) has two possible solutions f o r  t h i s  case, 

q = COS p = t1 ; p = a rb i t r a ry  

p = cos p = ?1 ; q = a rb i t r a ry  

For the  f i r s t  solution, ' q  = f,l, (B-26) i s  indeterminate. However, it was 
pointed out e a r l i e r  t ha t  f o r  t he  modes a r e  ident ica l  with those of a 
single span of length a . It follows from ( B - l e ) ,  (B-24) ,  and (B-9) through 
(B-12) t ha t  the  cases m = 1, 2L+1, 4L+1 . . . . , correspond t o  q = -1 so tha t  
from (B-15) 

q = 21 

(B-29)  

and i f  m = L+1, 3L+l, 5U-1 ..... , q = 1 so tha t  

-(e) = fm(e )  - fm( i - e )  (B-30)  'a, a 

For the  second solution of ( B - M ) ,  i . e . ,  p = , (B-26) i s  degenerate and 
t h i s  solution i s  discarded. 

The f r ee  vibrat ion frequencies follow from the  ym which i n  tu rn  
are determined by (B-18) and (B-24).  The permissible values of y and p a r e  
i l l u s t r a t ed  i n  Fig. 5 f o r  8 = 0 and 10 . The smallest admissible value of y 
i s  obtained f o r  cos p = -1 , corresponding t o  t h e  smallest y obtained from 
(B-18)  and (B-24) with m = 1 . Setting m = 2,3 . . . . . L y ie lds  successively 
increasing values of y , with 
clamped beam). Sett ing rn = L+1 gives y = 1.5056 n but t h i s  corresponds t o  
the solution p = 1 of (€3-18) which i s  degenerate. This solution i s  there-  
fore discarded as t r i v i a l .  The value m = L+1 gives a second value y > 
1.5056 n which i s  a permissible value, corresponding t o  the  solution q = 1 
of (B-18).  Successively increasing values of y a r e  obtained by se t t i ng  
m = L+2, L+3, .... .. 2L . Setting m = 2L+1 yields  a t r i v i a l  solution 
y = 2.4998 TT corresponding t o  p = -1 and a permissible solution y > 2.4998 7. 

yL < 1.5056 TT ( the  lowest frequency of a clamped- 
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Additional frequencies are obtained as indicated, w i t h  the  t r i v i a l  o r  de- 
generate solutions being successively the  ascending frequencies of a clamped- 
clamped beam. 

Figure 5 shows that the  natural frequencies f o r  t h e  beam are contained 
within d i sc re t e  frequency bands. 
bays, L , and t he  width of t h e  bands decreases w i t h  increasing e , i. e., as 
t h e  clamped condition i s  approached. For a beam of L bays there  are L 
d iscre te  natural frequencies i n  each frequency band. 
extending beam t h e  na tura l  frequencies form a continuous spectrum throughout 
each band. 

These bands are independent of the number of 

Thus, f o r  an i n f i n i t e l y  

Table I (Appendix A) gives some ins ight  i n to  the  physical significance 
of e . 
with g = 0, 10, 100, and 1,000 a r e  compared respectively t o  the  first four 
frequencies f o r  a clamped-clamped beam ( e  = m )  . It i s  seen tha t ,  frequency- 
wise, g = 10 l i e s  approximately midway between t h e  pinned case ( 6  = 0) and 
t h e  clamped case, whereas E = 1,000 very closely approximates the  clamped 
condition. 

I n  the  table the  first four frequencies f o r  a one bay beam ( L  = 1) 

To summarize, t he  chordwise def lect ion functions used i n  the f l u t t e r  
analysis  are as follows:* 

where 

= C m , a  -f m ( e )  + Dm,-,f,(l-9) 

(B-32) 

(B-33) 

(B-34) 

fm(8> = s i n  y , ~  - ( s i n  y, si& ym8)/sinh ym 

(B-31) 

i n  (B-26) i s  discarded. 
(9, - cos 

* The multiplying fac tor  
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with t h e  special  cases 

(B-35) 

f o r  m = 1, 2L+1, 4L+1, . , . . . . . 

and C m , a  = 1 

(B-36) 

f o r  m = -1, 3L+1, 5L+1, . . . . . 

I n  a l l  cases frequencies are obtained as described ea r l i e r ,  taking E = ex . 
The spanwise deflection function Qn(y) is  not formulated here since 

it can be deduced from t h e  formulations f o r  
la t ion of t h e  notation, taking E = c: 

4 (x) by straightforward manipu- m 
Y '  
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APPENDIX c 

EVALUATION OF THE AERODYNAMIC 1"EGRAL k,m,u 
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From Eqs. (22) and (28) of t h e  report  

where 

Two procedures for evaluating I- a r e  outlined i n  t h e  report .  The pur- 
pose of t h i s  Appendix i s  t o  present these procedures i n  d e t a i l .  m,m,u 

Procedure 1 

This procedure, t h e  more approximate of t h e  two, makes use of two 
basic approximations. F i r s t ,  t h e  Bessel functions i n  Pu(<) a re  approximated 
by sums of c i r cu la r  functions [33 . 
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where 

The term(s) appearing outside of the  swmation sign give an estimate of the 
e r ro r  i n  the  representation and consequently a re  omitted i n  the  analysis.  
the  numerical work, 

I n  
J2(ru5) is replaced by means of the  iden t i ty  

The second basic approximation introduced i n  t h i s  procedure i s  the  
i n  a t m c a t e d  s ine se r i e s  

%I ’ expansion of the  chordwise deflection function, 

P,(x) = s i n  
L t 

Substi tution of these approximations gives 

where 

bt,; = o i f  t f X 

= l i f t = t  
- 

(c-3) 

I 
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g = o if ( t+X)L i s  even 
t,t 

- - 2' i f  ( t + c ) L  i s  odd 
n( t 2 - t 2 >  

LZ k =  
U 

a 
b 

s = -  

2kL2 
X r  b, = - 

sg2 

(c-10) 

(c-11) 

(c-12) 

(C-13) 

(C-14) 

(C-15) 



- + e  - 
hr,t,t - er,tcr,t r,tcrJt 

{C-16) 

(C-17) 

(C-18) 

(c-19) 

(c-20) 

(c-21) 

(c-22) 

Procedure 1, jus t  outlined, i s  suitable only f o r  s m a l l  values of 
the  argument of the Bessel functions 
e t e r s  t he  nmber of terms tha t  must be car r ied  i n  the  series approximations 
becomes prohibit ive.  
L 5, 2 , and rus 5 10 . 

m, L, and 
rug . For la rge  values of these param- 

Roughly speakingthe procedure i s  p rac t i ca l  f o r  m 5 4 , 
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Procedure 2 

When the  first procedure i s  not p rac t i ca l  it i s  best t o  approach the  

k,m,u integral  by f i r s t  changing the  order of integrat ion t o  give 

If loca l  coordinates 

- e = x - (2-1) ; &-1 5 x 5 a 

are introduced ( C - 2 3 )  becomes 

L L r l  r l  

L-1 L F 1  PeY 

( C  -24) 

(C-25) 

From the def ini t ion of the  chordvise def lect ion function given i n  Appendix B, 
it i s  c lear  tha t  
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where 
sin y 

sinh y 
fm(u) = s i n  ymu - sinh ymu 

m 

It is therefore  convenient t o  introduce the following general i n t eg ra l  
def in i t ions  

(C-27) 

where f r o m  [SI 

and 
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m + E  

I n  these def ini t ions,  fy)(e) f o r  a = 0 i s  fm(0)  , and not un i ty  as the  
notation seems t o  suggest. Using the def in i t ions  (C -27 )  t o  (C-29) the aero- 
dynamic in tegra l  becomes 

where 

(C -30 )  
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- l L  
(C-32) 
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AppEmDIX D 

EVALUATION OF INTEGRALS J~y,yK~Jm,R~,my SJ TJ Q 
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The integrals  J ~ , m j  G,m, and %Jm involve t h e  chordwise def lect ion 
functions em and t h e i r  derivatives.  Therefore introduce l o c a l  coordinates 
and deflections from Appendix B, 

The in t eg ra l s  can then be wr i t ten  as 

These i n t eg ra l s  can be evaluated conveniently by referr ing t o  the  
functions introduced i n  Appendix C, E q s .  ( C - 2 8 )  and (C-29). 

F- 
There results 

m,m 

r 7 L  
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The in tegra ls  S, T, and Q involve t h e  spanwise def lect ion shape 
and i t s  derivatives.  Introduce local coordinates and def lect ion Qn 

k = 1,2,3, . .... N - 
$n - $n,k 

and subsequently obtain 

(D-9 1 

(D-10) 

(D-11) 

(D-12) 

(D-13) 
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Since these in tegra ls  depend on t h e  spanvise def lect ion shape, it i s  again 
necessary t o  consider each of t h e  f i v e  physical s i t u a t i o n s  of i n t e r e s t  t o  t h e  
present analysis .  
and i n  Appendix E. It t u r n s  out t h a t  f o r  cases 1, 2, and 3 

These s i tua t ions  a r e  l i s t e d  i n  d e t a i l  i n  t h e  report  body 

4 
n 

Q = V  S 

For cases 4 and 5 these quant i t ies  reduce t o  simply 

S = l  

T = Q = O  

-58- 
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APPENDIX E 

EVALUATION OF FOURIER COEFFICIEWS B, .. AND THE INTEGRAL F(u) 
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The spanwise deflection shape On(y) i s  expanded i n  a s ine series 

where i s  the  transformed coordinate (Fig. 3 )  

(E-1)  

and 1 i s  a constant t o  be evaluated. The coeff ic ients  Bn,u a r e  given by 

( E - 3 )  

These coeff ic ients  are t o  be evaluated f o r  each of t h e  f i v e  physical s i tuat ions 
t o  be analyzed. The s i tuat ions are repeated here f o r  completeness. 

(1) A panel array as shown i n  Fig.  1 with a f i n i t e  number of panels 
i n  both t h e  chordwise and spanwise direct ion.  
inf lexible  surface extending t o  i n f i n i t y  i n  a l l  directions.  

The array i s  bordered by an 

( 2 )  
the spanwise direction. 

The same zs (1) except t h a t  t h e  array extends t o  i n f i n i t y  i n  

( 3 )  The same as (1) except t h a t  t h e  array i s  flanked on the  sides 
by v e r t i c a l  w a l l s  (a wind tunnel i n s t a l l a t i o n  f o r  instance) an a r b i t r a r y  d i s -  
tance from the edge of t h e  array.  

* 

( 4 )  The same a s  (1) except t ha t  t h e  array has one panel i n  t h e  span- 
wise direct ion (N=l) and the  side edges a r e  f ree .  

(5) The same as (4) except t h a t  t he  array i s  flanked by v e r t i c a l  
walls a s  described i n  (3).  



Before evaluating t h e  Bn,u it i s  useful t o  first determine 1 f o r  each 
case. Geometrical aspects of t h e  expansion (E-1) a r e  shown i n  Fig. 3 f o r  
cases (1) and ( 4 ) .  
and t h e  periodic expansion of ~ ) ~ w  shown i n  Fig. 3b. The dDmain of aero- 
dynamic influence i s  i l l u s t r a t e d  i n  Fig. 3c. A l l  points  inside t h e  shaded 
region are aerodynamically coupled t o  the panel configuration being analyzed. 
It i s  seen t h a t  f o r  A 2 sL/2M t h e  periodic r e f l ec t ions  of qn are outside 
t h e  coupled region and t h e  effect  of an isolated panel array i s  obtained. 

The f i n i t e  span deflection shape i s  depicted i n  Fig. 5a, 

For cases ( 3 )  and (5) t h e  effect  of v e r t i c a l  walls i s  obtained by 
introducing f i c t i t i o u s  image panels on each s ide of t h e  real panel. 
metrical  aspects of t h i s  s i t ua t iona re  shown i n  Fig. 4. The w a l l  locations 
must be planes of symmetry i n  t h e  flow and this s i tua t ion  i s  real ized when 

The geo- 

SL 
- 5  N+2A 
M 

The desired aerodynamic i so l a t ion  i s  obtained by taking ), = N+3A/2 . 
The case of a panel array extending t o  i n f i n i t y  i n  t h e  spanwise 

i s  r e s t r i c t ed  t o  cases i n  which the  deflection i n  
direct ion (case 2 )  o f f e r s  some diff icul ty .  
i n  t h e  report  body, qn 
adjacent panels i s  antisymmetric i n  which case = 0 and B = 1 . 

I n  accordance with t h e  discussion 

I n  summary, then, 1 i s  taken as follows. 

Case 

1 

- x - 
s L / a  

2 0 

3 larger  of sL/m and r i+3~ /2  

5 l a rge r  of sL/2EII and I?+3A/2 

The coeff ic ients  Bn,u a r e  evaluated i n  t h e  following sections. 
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Case 1 - Panel Array of F in i t e  Spanwise Extent 

The deflection i s  given by 

From (E-3) there  follows 

A+N 

BnYu = Q n ( # )  s i n  d d$ 
B 

Introducing loca l  coordinates and a loca l  def lect ion 

Tl = y-(lt-1) ; I<-1 5 y < It 

Qn = $n,k(q) ; k = 1,2 .... N 

yields 

- 62 - 

( E - 4 )  

(E-5 )  

(E-6)  



2 -(?) En,k ?(')(,) n - b n,k ?(')(O)]] n sin B (k+h) 

03-71 

- - 
where c,,k , Dn,k and Fn(v) are defined i n  Appendix B . 

Case 2 - Panel Array of I n f i n i t e  Spanwise Extent 

The coeff ic ients  for t h i s  case a re  obtained fron (E-7)  by setting 
k = N = B = 1. There follows 
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Case 3 - Panel Array of F in i t e  Spanwise Extent with Vertical  Side Ifalls 

The def lect ion i s  given by (Fig. 4)  

From (E-3 )  there  follows 

(E-10) 

which gives 
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+ s i n  B (k+x+A+N)J 

+ cos 9 (k+X+A+N)l 
B 

X [sin % (k-l+X-N-A) + s i n  % (k-l+A) + s i n  (k-l+),+A+N)l 
B B B 

1 

X [cos (k-l+X-N-A) + cos % (k-l+A) + cos % 
B B 

Case 4 - Panel Array with N = 1 and Side Edges Free 

The def lect ion is  given by 

(E-11) 

(E-12) 
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From (E-3)  there  follows 

or 
c - 

(E-13) 

(E-14) 

Case 5 - Panel .bray with N = 1 , Side Edges Free and with Vert ical  Side Walls 

This case i s  a special  form of case 3 with k = N = Qn = 1 . 
Straightforward integration gives 

Bn,u = 5 [COS ( 1 - A - 1 )  - COS ( 1 - A )  + cos !!E ( I )  
B B 

- COS Un ( x + i )  + COS Urr ( A - : - A + ~ )  
B B 

(E-15) 

A second purpose of t h i s  Appendix i s  t o  evaluate t h e  in t eg ra l  

$n s i n  UllB - d$ (E-16) 
F(u) = LA" B 

introduced i n  Eq. (29) of t h e  section dealing with t h e  aerodynamic terms. 
evaluating F (u )  it i s  again necessary t o  be cognizant of t h e  f i v e  physical 
cases of i n t e re s t .  
(21 ,  and ( 4 )  

In  

Comparison of (E-16) with (E-3) shows t h a t  f o r  cases (l), 
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For cases (3) and ( 5 ) ,  F(u) can be evaluated i n  closed form t o  give: 

+ Bn,k?r')(l)] sin B (k- l+h)  

Case (5) 

(E-19) 
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